题目内容

【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式;
(2)求△MCB的面积SMCB

【答案】
(1)

解:依题意:

解得

∴抛物线的解析式为y=﹣x2+4x+5


(2)

解:令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,

∴B(5,0).

由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)

作ME⊥y轴于点E,

可得SMCB=S梯形MEOB﹣SMCE﹣SOBC= (2+5)×9﹣ ×4×2﹣ ×5×5=15.


【解析】(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.(2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB的面积减去三角形MCE的面积减去三角形OBC的面积求得.
【考点精析】通过灵活运用二次函数的图象和二次函数的性质,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网