题目内容
【题目】如图,Rt△ABC中,∠C=90°,AB=5,BC=4,点G为边BC的中点,点D从点C出发沿CA向点A运动,到点A停止,以GD为边作正方形DEFG,则点E运动的路程为_______.
【答案】3
【解析】
建立下图所示的坐标系,过点E作EH⊥y轴,垂足为H,先证明△EDH≌△DGC,则DH=GC=2,DC=EH,设DC=t,则EH=t,点E的坐标为(-t,t+2),然后求得当t=0和t=3时点E的坐标,然后利用两点间的距离公式即可求解.
解:建立如图所示的坐标系,过点E作EH⊥y轴,垂足为H.
∵BC=4,点G为边BC的中点,
∴GC=2.
∵DEFG为正方形,
∴ED=DG,∠EDG=90°.
∴∠EDH+∠GDC=90°.
又∵∠EDH+∠HED=90°,
∴∠GDC=∠HED.
在△EDH和△DGC中,∠GDC=∠HED,∠EHD=∠DCG,ED=DG,
∴△EDH≌△DGC.
∴DH=GC=2,DC=EH.
设DC=t,则EH=t,
∴点E的坐标为(-t,t+2),
∴点E在直线y=-x+2.
由题意可知:0<t≤3,
当t=0时,y=2,E(0,2)
当t=3时,y=5,E(-3,5)
∴点E运动的路线长= .
故答案为:3 .
【题目】“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄 | 清理养鱼网箱人数/人 | 清理捕鱼网箱人数/人 | 总支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?