题目内容
在一个不透明的袋子里装有3个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸100次,其中20次摸到黑球.根据上述数据,小明估计口袋中白球大约有
- A.10个
- B.12 个
- C.15 个
- D.18个
B
分析:小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.
解答:∵小明共摸了100次,其中20次摸到黑球,
∴有80次摸到白球,
∴摸到黑球与摸到白球的次数之比为1:4,
∴口袋中黑球和白球个数之比为1:4,
3÷=12(个).
故选B.
点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
分析:小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.
解答:∵小明共摸了100次,其中20次摸到黑球,
∴有80次摸到白球,
∴摸到黑球与摸到白球的次数之比为1:4,
∴口袋中黑球和白球个数之比为1:4,
3÷=12(个).
故选B.
点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
练习册系列答案
相关题目