题目内容
【题目】将已知六边形ABCDEF,用对角线将它剖分成互不重叠的4个三角形,那么各种不同的剖分方法种数是( )
A.6
B.8
C.12
D.14
【答案】D
【解析】解答:∵六边形ABCDEF有6个顶点,且用对角线将它剖分成互不重叠的4个三角形, ∴只能通过同一个顶点作三条对角线(如图1),这种分法有6种,
也从一个顶点作两条对角线(如图2),这种分法有2种,
如图3,中间是个四边形,两端2个三角形,把四边形加条对角线,这种分法有6种,
故各种不同的剖分方法有14种.
分析:本题考查了多边形的对角线,n边形过一个顶点有(n-3)条对角线,它们把n边形分割成了(n-2)个三角形.
【考点精析】解答此题的关键在于理解多边形的对角线的相关知识,掌握设多边形的边数为n,则多边形的对角线条数为n(n-3)/2.
练习册系列答案
相关题目
【题目】星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如下表:
进价(元/台) | 售价(元/台) | |
电饭煲 | 200 | 250 |
电压锅 | 160 | 200 |
(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?
(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的 ,橱具店有哪几种进货方案?并说明理由.
(3)在(2)的条件下,直接写出橱具店赚钱最多的进货方案.