题目内容
【题目】类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是 ,CG和EH的数量关系是 ,的值是
(2)类比延伸
如图2,在原题的条件下,若=m(m≠0),则的值是 (用含m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F,若=a,=b(a>0,b>0),则的值是 (用含a,b的代数式表示).
【答案】(1)AB=3EH;CG=2EH;.(2).(3)ab.
【解析】
试题分析:(1)本问体现“特殊”的情形,=3是一个确定的数值.如答图1,过E点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH来表示,最后求得比值;
(2)本问体现“一般”的情形,=m不再是一个确定的数值,但(1)问中的解题方法依然适用,如答图2所示.
(3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如答图3所示
解:(1)依题意,过点E作EH∥AB交BG于点H,如图1所示.
则有△ABF∽△EHF,
∴==3,
∴AB=3EH.
∵ABCD,EH∥AB,
∴EH∥CD,
又∵E为BC中点,
∴EH为△BCG的中位线,
∴CG=2EH.
∴.
故答案为:AB=3EH;CG=2EH;.
(2)如图2所示,作EH∥AB交BG于点H,则△EFH∽△AFB.
∴.
∴AB=mEH.
∵AB=CD,
∴CD=mEH.
∵EH∥AB∥CD,
∴△BEH∽△BCG.
∴=2,
∴CG=2EH.
∴=.
故答案为:.
(3)如图3所示,过点E作EH∥AB交BD的延长线于点H,则有EH∥AB∥CD.
∵EH∥CD,
∴△BCD∽△BEH,
∴=b,
∴CD=bEH.
又,
∴AB=aCD=abEH.
∵EH∥AB,
∴△ABF∽△EHF,
∴=ab.
故答案为:ab.