题目内容

【题目】如图,在△ABC 中,∠C=90°

(1)利用尺规作∠B 的角平分线交AC于D,以BD为直径作⊙O交AB于E(保留作图痕迹,不写作法);

(2)综合应用:在(1)的条件下,连接DE

①求证:CD=DE;

②若sinA=,AC=6,求AD.

【答案】(1)作图见解析;(2)①证明见解析;②AD=.

【解析】试题分析:(1)利用角平分线的作法得出∠B的角平分线BD,根据线段垂直平分线的作法作出线段BD的垂直平分线,交BD于点O,以O为圆心,以OB长为半径作圆即可;(2)根据直径所对的圆周角为直角可得∠BED=90°,再由角平分线的性质可得CD=DE;RtADE中,sinA== DC=DE=3xAD=5x,根据AC=AD+DC列出方程求得x的值,即可求得AD的长.

试题解析:

(1)

(2)∵BD为O的直径

∴∠BED=90°,又∵∠C=90°

∴DE⊥AB,DC⊥BC

又∵BD平分∠ABC

∴DE=DC

(3)

在Rt△ADE中,sinA=

∵sinA=

=

设DC=DE=3,AD=5

∵AC=AD+DC

∴3+5=6

=

AD=5=5×=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网