题目内容
【题目】如图 (1)所示,圆内接△ABC中,AB=BC=CA,OD,OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G.
(1)求证阴影部分四边形OFCG的面积是△ABC面积的;
(2)如图 (2)所示,若∠DOE保持120°角度不变,求证当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)本题要依靠辅助线的帮助.连接OA,OC,证明Rt△OFC≌Rt△OGC≌Rt△OGA后求得S△OAC=SΔABC,易证SOFCG=SΔABC.
(2)本题有多种解法.连接OA,OB和OC,证明△AOC≌△COB≌△BOA,求出∠AOC以及∠DOE之间的关系即可.
解:(1)连接OA,OC,∵点O是等边三角形ABC的外心,Rt△OFC≌Rt△OGC≌Rt△OGA,S四边形OFCG=2S△OFC=S△OAC.∵S△OAC=S△ABC,∴S四边形OFCG=S△ABC.
(2)证法1:如图 (1)所示,连接OA,OB和OC,则△AOC≌△COB≌△BOA,∠1=∠2.不妨设OD交BC于点F,OE交AC于点G,∠AOC=∠3+∠4=120°,∠DOE=∠5+∠4=120°,∴∠3=∠5.在△OAG和△OCF中, ∴△OAG≌△OCF,∴S四边形OFCG=S△AOC=S△ABC.证法2:如图 (2)所示,不妨设OD交BC于点F,OE交AC于点G,作DH⊥BC,OK⊥AC,垂足分别为点H,K.在四边形HOKC中,∠OHC=∠OKC=90°,∠C=60°,∴∠HOK=360°-90°-90°-60°=120°,即∠1+∠2=120°.又∵∠GOF=∠2+∠3=120°∴∠1=∠3.∵AC=BC,∴OH=OK.又∠OHF=∠OKG=90°.∴△OFH≌△OGK,∴S四边形OFCG=S四边形OHCK=S△ABC.