题目内容

【题目】如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是(
A.AC⊥BC
B.BE平分∠ABC
C.BE∥CD
D.∠D=∠A

【答案】C
【解析】解:连接OC. ∵AB是直径,
∴∠ACB=90°,
∴AC⊥BC,故A正确,
∵OD∥BC,
∴∠EBC=∠BEO,
∵OE=OB,
∴∠OEB=∠OBE,
∴∠EBO=∠EBC,
∴BE平分∠ABC,故B正确,
∵DC是切线,
∴DC⊥CO,
∴∠DCO=90°,
∴∠D+∠DOC=90°,
∵BC⊥AC,OD∥BC,
∴OD⊥AC,
∵OA=OC,
∴∠AOD=∠DOC,
∴∠A+∠AOD=90°,
∴∠A=∠D,故D正确.
无法判断C正确,
故选C.

【考点精析】关于本题考查的切线的性质定理,需要了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网