题目内容
【题目】有这样一个问题:探究函数y=﹣2x的图象与性质.
小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数y=﹣2x的自变量x的取值范围是_______;
(2)如表是y与x的几组对应值
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ |
|
| 0 | ﹣ | ﹣ | m | … |
则m的值为_______;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)观察图象,写出该函数的两条性质________.
【答案】(1)任意实数;(2);(3)见解析;(4)①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.
【解析】
(1)没有限定要求,所以x为任意实数,
(2)把x=3代入函数解析式即可,
(3)描点,连线即可解题,
(4)看图确定极点坐标,即可找到增减区间.
解:(1)函数y=﹣2x的自变量x的取值范围是任意实数;
故答案为:任意实数;
(2)把x=3代入y=﹣2x得,y=﹣;
故答案为:﹣;
(3)如图所示;
(4)根据图象得,①当x<﹣2时,y随x的增大而增大;
②当x>2时,y随x的增大而增大.
故答案为:①当x<﹣2时,y随x的增大而增大;
②当x>2时,y随x的增大而增大.
练习册系列答案
相关题目