题目内容
【题目】如图,正方形的边长为4,甲、乙两动点分别从正方形的顶点同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若乙的速度是甲的速度的3倍,则它们第2 019次相遇在( )
A. 边上 B. 边上 C. 边上 D. 边上
【答案】B
【解析】
此题利用行程问题中的相遇问题,根据乙的速度是甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.
解:正方形的边长为4,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:
①第一次相遇甲乙行的路程和为8,甲行的路程为8×=2,乙行的路程为8-2=6,在AD边相遇;
②第二次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16-4=12,在DC边相遇;
③第三次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16-4=12,在CB边相遇;
④第四次相遇甲乙行的路程和为16,甲行的路程为16×=4,乙行的路程为16-4=12,在AB边相遇;
…
∵2019=504×4+3,
∴甲、乙第2017次相遇在边BC上.
故选:B.
练习册系列答案
相关题目