题目内容
【题目】如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长. (参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)
【答案】解:设梯子的长为xm. 在Rt△ABO中,cos∠ABO= ,
∴OB=ABcos∠ABO=xcos60°= x.
在Rt△CDO中,cos∠CDO= ,
∴OD=CDcos∠CDO=xcos51°18′≈0.625x.
∵BD=OD﹣OB,
∴0.625x﹣ x=1,
解得x=8.
故梯子的长是8米.
【解析】设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.
练习册系列答案
相关题目