题目内容

【题目】已知RtABCRtADE,其中∠ACB=AED=90°.

(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;

(2)改变ADE的位置,使DEBC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EFDE之间的等量关系,并说明理由.

【答案】(1)证明见解析;(2) (1)中的结论不成立,有DE=BF﹣EF,理由见解析.

【解析】试题分析:(1)由Rt△ABC≌Rt△ADEAC=AE,根据HL可证得Rt△ACF≌Rt△AEF,由BC=BF+CF代入可得结论;

(2)如图②,(1)中的结论不成立,有DE=BF-EF,同(1):证明Rt△ACF≌Rt△AEF,再由BC=BF-FC得出结论.

试题解析:(1)如图①,连接AF,

∵Rt△ABC≌Rt△ADE,

∴AC=AE,BC=DE,

∵∠ACB=∠AEF=90°,AF=AF,

∴Rt△ACF≌Rt△AEF,

∴CF=EF,

∴BF+EF=BF+CF=BC,

∴BF+EF=DE;

(2)如图②,(1)中的结论不成立,有DE=BF-EF,理由是:

连接AF,

∵Rt△ABC≌Rt△ADE,

∴AC=AE,BC=DE,

∵∠E=∠ACF=90°,AF=AF,

∴Rt△ACF≌Rt△AEF,

∴CF=EF,

∴DE=BC=BF-FC=BF-EF,

DE=BF-EF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网