题目内容
如图,在扇形OAB中,∠AOB=90°,C为OA的中点,点D在AB |
分析:根据在直角三角形中所对的边等于斜边的一半,得出∠CDO=30°,进而得出∠COD=60°,再利用圆周角定理求出即可.
解答:解:连接DO,
∵∠AOB=90°,C为OA的中点,
∴2CO=DO,
∴∠CDO=30°,
∴∠COD=60°,
根据圆周角定理可得:∠ABD=30°.
故答案为:30°.
∵∠AOB=90°,C为OA的中点,
∴2CO=DO,
∴∠CDO=30°,
∴∠COD=60°,
根据圆周角定理可得:∠ABD=30°.
故答案为:30°.
点评:此题主要考查了圆周角定理以及含30°角直角三角形,根据题意得出2CO=DO,进而得出∠CDO=30°是解决问题的关键.
练习册系列答案
相关题目