题目内容
【题目】要测量旗杆高CD , 在B处立标杆AB=2.5cm,人在F处.眼睛E、标杆顶A、旗杆顶C在一条直线上.已知BD=3.6m,FB=2.2m,EF=1.5m.求旗杆的高度.
【答案】解答:过E作EH∥FD分别交AB、CD于G、H .
因为EF∥AB∥CD , 所以EF=GB=HD .
所以AG=AB-GB=AB-EF=2.5-1.5=1m
EG=FB=2.2m,GH=BD=3.6m
CH=CD-1.5m
又因为 = ,
所以 =
所以CD=4 m,即旗杆的高4 m
【解析】过E作EH∥FD分别交AB、CD于G、H , 根据EF∥AB∥CD可求出AG、EG、GH , 再根据相似三角形的判定定理可得△EAG∽△ECH , 再根据三角形的相似比解答即可.
【考点精析】本题主要考查了相似三角形的应用的相关知识点,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能正确解答此题.
练习册系列答案
相关题目