题目内容
某公园的门票价格如下表所示:
某校七年级甲、乙两个班共有100多人去该公园举行联欢,其中甲班有50多人,乙班不足50人.如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共要付515元,则甲班有
购票人数 | 1~50人 | 51~100人 | 101人以上 |
票价 | 10元/人 | 8元/人 | 5元/人 |
55
55
人,乙班有48
48
人.分析:等量关系有:甲班人数×8+乙班人数×10=920;(甲班人数+乙班人数)×5=515,据此可列方程组求解.
解答:解:设甲班有x人,乙班有y人.
由题意得:
解得:
.
答:甲班55人,乙班48人.
故答案为:55,48.
由题意得:
|
解得:
|
答:甲班55人,乙班48人.
故答案为:55,48.
点评:此题主要考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题按购票人数分为三类门票价格.
练习册系列答案
相关题目
长沙市某公园的门票价格如下表所示:
某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?
购票人数 | 1~50人 | 51~100人 | 100人以上 |
票价 | 10元/人 | 8元/人 | 5元/人 |
某公园的门票价格如下表:
实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班各有多少名学生联合起来购票能省多少钱?
购票人数 | 1-50人 | 51-100人 | 100人以上 |
每人门票数 | 13元 | 11元 | 9元 |
某公园的门票价格如下表所示:
某中学七年级(1)、(2)两个班计划去游览该公园,其中(1)班的人数较少,不足50人;(2)班人数略多,有50多人、如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.
(1)列方程求出两个班各有多少学生;
(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出你的方案.
购票人数 | 1~50人 | 51~100人 | 100人以上 |
每人门票价 | 13元 | 11元 | 9元 |
(1)列方程求出两个班各有多少学生;
(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出你的方案.
某公园的门票价格如下表所示:
思益中学初一(1),(2)两个班计划去游览该公园,其中(1)班人数较少,不足50人;(2)班人数较多,有50多人.如果两个班都以班为单位分别购票,则一共应付1207元:如果两班联合起来,作为一个团体购票,则只需付909元.
(1)判断是否存在这样的可能:人数在51~100人之间时买票的钱数,与人数在100人以上时买票的钱数相等?如果存在,各是多少人?
(2)如何判断两个班的总人数超过100人还是不超过100人?
(3)列方程或方程组求出两个班各有多少学生;
(4)如果两个班不联合买票,初一(l)班的学生是否一定要购单价为13元的票,你有什么省钱的方法来帮他们买票呢?说说你的理由.
购票人数 | 1~50人 | 51~100人 | 100人以上 |
每人门票价 | 13元 | 11元 | 9元 |
(1)判断是否存在这样的可能:人数在51~100人之间时买票的钱数,与人数在100人以上时买票的钱数相等?如果存在,各是多少人?
(2)如何判断两个班的总人数超过100人还是不超过100人?
(3)列方程或方程组求出两个班各有多少学生;
(4)如果两个班不联合买票,初一(l)班的学生是否一定要购单价为13元的票,你有什么省钱的方法来帮他们买票呢?说说你的理由.