题目内容

【题目】下列条件:①∠A=∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°+∠B;④∠A=∠B=∠C,能确定△ABC是直角三角形的条件有( )

A. 1个 B. 2个 C. 3个 D. 4个

【答案】B

【解析】①因为∠A=∠B=∠C,所以△ABC是等边三角形,不是直角三角形,故不符合题意

②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形,符合题意

③因为∠A=90°+∠B,∠A+∠B+∠C=180°,所以2∠B+∠C=90°,则∠A、∠B、∠C都不可能是90°,所以△ABC不是直角三角形不符合题意

④因为∠A=∠B=∠C,设∠A=x,则∠B=x,∠C=2x,由三角形内角和定理得,x+x+2x=180°,x=45°,∠C=2x=90°,所以ABC是直角三角形,符合题意,

所以能确定△ABC是直角三角形的有②④共2

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网