题目内容

【题目】如图,四边形ABCD中,∠BAD=110°,B=D=90°,在BCCD上分别找一点MN,使AMN周长最小,则∠AMN+ANM的角度为________

【答案】140°

【解析】

作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题连接AA″与BCCD的交点即为所求的点MN利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解

如图作点A关于BC的对称点A′,关于CD的对称点A″,连接AA″与BCCD的交点即为所求的点MN

∵∠BAD=110°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣110°=70°,由轴对称的性质得:∠A′=∠AAM,∠A″=∠AAN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×70°=140°.

故答案为:140°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网