题目内容

【题目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如图所示的方式放置.点A1 , A2 , A3 , …和点C1 , C2 , C3 , …分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是

【答案】(2n﹣1,2n1
【解析】解:∵点B1(1,1),B2(3,2),
∴A1(0,1)A2(1,2)A3(3,4),
∴直线y=kx+b(k>0)为y=x+1,
∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标
又An的横坐标数列为An=2n1﹣1,所以纵坐标为2n1
∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n1).
故答案为:(2n﹣1,2n1).
由图和条件可知A1(0,1)A2(1,2)A3(3,4),由此可以求出直线为y=x+1,Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n1﹣1,所以纵坐标为(2n1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网