题目内容

【题目】如图,矩形OABC的顶点Ay轴的正半轴上,点Cx轴的正半轴上,反比例函数y=(k≠0)的图象的一个分支与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF和矩形HDBE的面积分别是25,则k的值是(  )

A. 7 B. C. 2+ D. 10

【答案】C

【解析】

D(t,),由矩形OGHF的面积为2求得HF=根据反比例函数图象上点的坐标特征可表示出E点坐标为(kt,),再利用矩形面积公式得到(kt﹣t)()=5,然后解关于k的方程即可得到满足条件的k的值.

D(t, ),

∵矩形OGHF的面积为2,DF⊥x轴于点F,

∴HF=

∵EG⊥y轴于点G,

∴E点的纵坐标为

y=时,=,解得x=kt,

∴E(kt,),

∵矩形HDBE的面积为5,

∴(kt﹣t)()=5,

整理得,(k﹣2)2=10,

∵k>0,

∴k=

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网