题目内容
如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?
解:(1)当m=2时,,
把x=0代入,得:y=2,
∴点B的坐标为(0,2)。
(2)延长EA,交y轴于点F,
∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,
∴△AFC≌△AED(AAS)。∴AF=AE。
∵点A(m,),点B(0,m),
∴AF=AE=|m|,,
∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,
∴△ABF∽△DAE,∴,即:。∴DE=4。
(3)①∵点A的坐标为(m,),∴点D的坐标为(2m,)。
∴x=2m,y=,
∴y=,
∴所求函数的解析式为:y=。
②作PQ⊥DE于点Q,则△DPQ≌△BAF,
(Ⅰ)当四边形ABDP为平行四边形时(如图1),
点P的横坐标为3m,
点P的纵坐标为:,
把P(3m,)代入y=得:
。
解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8。
(Ⅱ)当四边形ABDP为平行四边形时(如图2),
点P的横坐标为m,
点P的纵坐标为:,
把P(m,)代入得:
。
解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8。
综上所述:m的值为8或﹣8。
解析
某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元) | x |
销售量y(件) | |
销售玩具获得利润w(元) | |
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?