题目内容
某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元) | x |
销售量y(件) | |
销售玩具获得利润w(元) | |
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
解:(1)
(2)﹣10x2+1300x﹣30000=10000销售单价(元) x 销售量y(件) 1000﹣10x 销售玩具获得利润w(元) ﹣10x2+1300x﹣30000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润。
(3)根据题意得,解之得:44≤x≤46 。
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大。
∴当x=46时,W最大值=8640(元)。
答:商场销售该品牌玩具获得的最大利润为8640元。
解析试题分析:(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣30000。
(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣30000转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润。
练习册系列答案
相关题目