题目内容
【题目】如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________s时,以C点为圆心,2cm为半径的圆与直线EF相切.
【答案】
【解析】
当以点C为圆心,2cm为半径的圆与直线EF相切时,即CF=2cm,又因为∠EFC=∠O=90°,所以△EFC∽△DOC,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤2.
当以点C为圆心,2cm为半径的圆与直线EF相切时,
此时,CF=2,
由题意得:AC=4t,BD=3t
∴OC=8-4t,OD=6-3t,
∵点E是OC的中点,
∴CE=OC=4-2t,
∵∠EFC=∠O=90°,∠FCE=∠DCO,
∴△EFC∽△DOC,
∴,
∴EF=,
由勾股定理可知:CE2=CF2+EF2,
∴(4-2t)2=2 2+()2,
解得:t=或t=,
∵0≤t≤2,
∴t=.
故答案为:.
练习册系列答案
相关题目
【题目】为了了解学生学习的环境(教室),研究人员对某校一间(坐满学生、门窗关闭)教室中的的总量进行检测,得到的部分数据如下:
教室连续使用时间 |
|
|
|
|
|
总量 |
|
|
|
|
|
经研究发现,该教室空气中总量是教室连使用时间的一次函数.
(1)请直接写出与的函数关系式;
(2)根据有关资料推算,当该教室空气中总量达到时,学生将会稍感不适,则该教室连续使用__________学生将会开始稍感不适.
(3)如果该教室在连续使用分钟时开门通风,在学生全部离开教室的情况下,分钟可将教室空气中的总量减少到 ,求开门通风时教室空气中平均每分钟减少多少立方米?