题目内容
【题目】△ABC中,AB=AC,∠ABC=72°,以B为圆心,以任意长为半径画弧,分别交BA、BC于M、N,再分别以M、N为圆心,以大于MN为半径画弧,两弧交于点P,射线BP交AC于点D,则图中与BC相等的线段有( )
A. BDB. CDC. BD和ADD. CD和AD
【答案】C
【解析】
由基本作图得到BP平分∠ABC,所以∠ABP=∠CBP=36°,则利用等腰三角形的性质得∠C=∠ABC=72°,再利用三角形内角和定理计算出∠A=36°,于是得到AD=BD,然后计算出∠BDC=72°,从而得到∠BDC=∠C,所以BD=BC.
解:由画法得BP平分∠ABC,则∠ABP=∠CBP= ,
∵AB=AC,
∴∠C=∠ABC=72°,
∴∠A=180°﹣2×72°=36°,
∴∠A=∠ABD,
∴AD=BD,
∵∠BDC=∠A+∠ABD=72°,
∴∠BDC=∠C,
∴BD=BC,
即BC=BD=AD.
故选:C.
练习册系列答案
相关题目