题目内容
【题目】已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.
(1)当点C.E.F在直线AB的同侧(如图1所示)①若∠COF=25°,求∠BOE的度数;②若∠COF=α°,则∠BOE=.
(2)当点C与点E.F在直线AB的两旁(如图2所示)时,(1)中第②式的结论是否仍然成立?请给出你的结论并说明理由.
【答案】(1)①50°,②2α;(2)成立.理由见详解.
【解析】
(1)根据角平分线的定义得到∠EOF=∠AOE,而∠EOF=90°-∠COF,即90°-∠COF=
∠AOE,再根据邻补角的定义得到90°-∠COF=(180°-∠BOE),整理得∠BOE=2∠COF;所以①当∠COF=25°时,∠BOE=2×25°=50°;②当∠COF=α时,∠BOE=2α;
(2)第②式的结论仍然成立.证明方法与前面一样.
解:(1)∵OF是∠AOE的平分线,
∴∠EOF=∠AOE,
∵∠COE=90°,
∴∠EOF=90°-∠COF,
∴90°-∠COF=∠AOE,
而∠AOE+∠BOE=180°,
∴90°-∠COF=(180°-∠BOE),
∴∠BOE=2∠COF,
①当∠COF=25°时,∠BOE=2×25°=50°;
②当∠COF=α时,∠BOE=2α;
故答案为2α;
(2)第②式的结论仍然成立.理由如下:
∵OF是∠AOE的平分线,
∴∠EOF=∠AOE,
∵∠COE=90°,
∴∠EOF=90°-∠COF,
∠AOE+∠BOE=180°,
∴90°-∠COF=(180°-∠BOE),
∴∠BOE=2∠COF.
【题目】某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下:
()自变量的取值范围是全体实数,与的几组对应值如下表:
其中,__________.
()根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象剩下的部分.
()观察函数图象,写出一条性质__________.
()进一步探究函数图象发现:
①方程有__________个实数根.
②关于的方程有个实数根时,的取值范围是__________.