题目内容
【题目】如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在BD上,OE=OF.
(1)求证:AE=CF.
(2)若AB=2,∠AOD=120°,求矩形ABCD的面积.
【答案】(1)见解析;(2)4
【解析】
(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;
(2)证出△AOB是等边三角形,得出OA=AB=2,AC=2OA=4,在Rt△ABC中,由勾股定理求出BC= =,即可得出矩形ABCD的面积.
(1)证明:∵四边形ABCD是矩形,
∴OA=OC,
在△AOE和△COF中,
,
∴△AOE≌△COF(SAS),
∴AE=CF;
(2)解:∠AOD=120°,
所以,∠AOB=60°,
∵OA=OC,OB=OD,AC=BD,
∴OA=OB,
∴△AOB是等边三角形,
∴OA=AB=2,
∴AC=2OA=4,
在Rt△ABC中,BC=,
∴矩形ABCD的面积=ABBC=2×2=4.
【题目】为了鼓励市民节约用水,某市水费实行分段计费制,每户每月用水量在规定用量及以下的部分收费标准相同,超出规定用量的部分收费标准相同.例如:若规定用量为10吨,每月用水量不超过10吨按1.5元/吨收费,超出10吨的部分按2元/吨收费,则某户居民一个月用水8吨,则应缴水费:8×1.5=12(元);某户居民一个月用水13吨,则应缴水费:10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和缴纳水费情况,根据表格提供的数据,回答:
月份 | 一 | 二 | 三 | 四 |
用水量(吨) | 6 | 7 | 12 | 15 |
水费(元) | 12 | 14 | 28 | 37 |
(1)该市规定用水量为 吨,规定用量内的收费标准是 元/吨,超过部分的收费标准是 元/吨.
(2)若小明家五月份用水20吨,则应缴水费 元.
(3)若小明家六月份应缴水费46元,则六月份他们家的用水量是多少吨?