题目内容
【题目】已知△ABC是⊙O的内接三角形,∠BAC的平分线交⊙O于点D.
(I)如图①,若BC是⊙O的直径,BC=4,求BD的长;
(Ⅱ)如图②,若∠ABC的平分线交AD于点E,求证:DE=DB.
【答案】(I)BD=2;(II)见解析.
【解析】
(I)连接OD,易证△DOB是等腰直角三角形,由勾股定理即可求出BD的长;
(II)由角平分线的定义结合(1)的结论即可得出∠CBD+∠CBE=∠BAE+∠ABE,再根据三角形外角的性质即可得出∠EBD=∠DEB,由此即可证出BD=DE.
解:(I)连接OD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∵∠BAC的平分线交⊙O于点D,
∴∠BAD=∠CAD=45°,
∴∠BOD=90°,
∵BC=4,
∴BO=OD=2,
∴;
(II)证明:∵BE平分∠ABC,
∴∠ABE=∠CBE.
∵∠BAD=∠CBD,
∴∠CBD+∠CBE=∠BAE+∠ABE.
又∵∠DEB=BAE+∠ABE,
∴∠EBD=∠DEB,
∴BD=DE.
练习册系列答案
相关题目