题目内容
甲、乙两车从A地出发,沿同一条高速公路行驶至距A地400千米的B地.l1,l2分别表示甲、乙两车行驶路程y(千米)与时间x(时)之间的关系(如图所示).根据图象提供的信息,解答下列问题:
(1)求l2的函数表达式(不要求写出x的取值范围);
(2)甲、乙两车哪一辆先到达B地该车比另一辆车早多长时间到达B地?
(1)求l2的函数表达式(不要求写出x的取值范围);
(2)甲、乙两车哪一辆先到达B地该车比另一辆车早多长时间到达B地?
(1)设L2的函数表达式是y=k2x+b,
则
,
解之得k2=100,b=-75,
∴L2的函数表达式为y=100x-75.
(2)由图可知,乙先到达B地.
∵300=100x-75,
∴x=3.75.
设l1的函数表达式是y=k1x.
∵该函数过点(3.75,300),
∴k1=80,即y=80x.
当y=400时,400=80x,
∴x=5.
∴5-4
=
(小时)
∴乙车比甲车早
小时到达B地.
则
|
解之得k2=100,b=-75,
∴L2的函数表达式为y=100x-75.
(2)由图可知,乙先到达B地.
∵300=100x-75,
∴x=3.75.
设l1的函数表达式是y=k1x.
∵该函数过点(3.75,300),
∴k1=80,即y=80x.
当y=400时,400=80x,
∴x=5.
∴5-4
3 |
4 |
1 |
4 |
∴乙车比甲车早
1 |
4 |
练习册系列答案
相关题目