题目内容
【题目】定义:如图(1),,,,四点分别在四边形的四条边上,若四边形为菱形,我们称菱形为四边形的内接菱形.
动手操作:
(1)如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由个小正方形组成一个大正方形,点、在格点上,请在图(2)中画出四边形的内接菱形;
特例探索:
(2)如图3,矩形,,点在线段上且,四边形是矩形的内接菱形,求的长度;
拓展应用:
(3)如图4,平行四边形,,,点在线段上且,
①请你在图4中画出平行四边形的内接菱形,点在边上;
②在①的条件下,当的长最短时,的长为__________
【答案】(1)详见解析;(2)3;(3)①详见解析;②的长为
【解析】
(1)以EF为边,作一个菱形,使其各边长都为 ;
(2)如图2,连接HF,证明△DHG≌△BFE(AAS),可得CG=3;
(3)①根据(2)中可知DG=BE=2,根据对角线垂直平分作内接菱形EFGH;
②如图5,当F与C重合,则A与H重合时,此时BF的长最小,就是BC的长,根据直角三角形30度角的性质和勾股定理计算可得结论.
(1)如图2所示,菱形即为所求;
(2)如图3,连接,
四边形是矩形,,,,,
四边形是菱形,,,,,即,
,;
(3)①如图4所示,由(2)知:,,
作法:作,连接,再作的垂直平分线,交、于、,得四边形即为所求作的内接菱形;
②如图5,当与重合,则与重合时,此时的长最小,过作于,中,,,,,
四边形是菱形,,
,
即当的长最短时,的长为
练习册系列答案
相关题目