题目内容
【题目】用1块A型钢板可制成2个C型模具和1个D型模具;用1块B型钢板可制成1个C型模具和3个D型模具,现准备A、B型钢板共100块,并全部加工成C、D型模具.
(1)若B型钢板的数量是A型钢板的数量的两倍还多10块,求A、B型钢板各有多少块?
(2)若销售C、D型模具的利润分别为80元/块、100元/块,且全部售出.
①当A型钢板数量为25块时,那么共可制成C型模具 个,D型模具 个;
②当C、D型模具全部售出所得的利润为34400元,求A型钢板有多少块?
【答案】(1)A型30块,B型70块;(2)①125,250;②30
【解析】
(1)根据A型钢板数+乙型钢板数=100,B型钢板数=2×甲型钢板数+10,设未知数构建二元一次方程组求解;
(2)C型模具的总数量=A型钢板数制成C型模具数+B型钢板数制成C型模具数,D型模具的总数量=A型钢板数制成D型模具数+B型钢板数制成D型模具数,分别求出C、D模具总数;总利润=C模具的总利润+D模具的总利润,建立一元一次方程求解.
(1)设A型钢板有x块,B型钢板有y块,依题意得:
解得:,
即在A、B型钢板共100块中,A型钢板有30块,B型钢板有70块.
(2)①当A型钢板数量为25块时,B型钢板数量有75块,
∴C型模具的数量为:2×25+1×75=125(个),
D型模具的数量为:1×25+3×75=250(个);
故答案为125,250.
②设A型钢板的数量为m块,则B型钢板的数量为(100m)块,依题意得:
80×[2m+1×(100m)]+100×[1×m+3(100m)]=34400,
解得:m=30
答:A型钢板有30块.
【题目】由若干个边长为1的小正方形组成的网格,小正方形的顶点叫做格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.
(1)上图中的格点多边形,其内部都只有一个格点,它们的面积(S)与各边上格点的个数和(x)的对应关系如下表,请写出S与x之间的关系式.答:S=_________.
多边形的序号 | ① | ② | ③ | ④ | … |
多边形的面积S | 2 | 2.5 | 3 | 4 | … |
各边上格点的个数和x | 4 | 5 | 6 | 8 | … |
(2)请再画出三个边数分别为3、4、5的格点多边形,使这些多边形内部都是有且只有2个格点.可得此类多边形的面积(S)与它各边上格点的个数和(x)之间的关系式是:S=________.