题目内容

【题目】如图①,在ABCD中,AB=10cm,BC=4cm,BCD=120°,CE平分∠BCDAB于点E.PA点出发,沿AB方向以1cm/s的速度运动,连接CP,将PCE绕点C逆时针旋转60°,使CECB重合,得到QCB,连接PQ.

(1)求证:PCQ是等边三角形;

(2)如图②,当点P在线段EB上运动时,PBQ的周长是否存在最小值?若存在,求

PBQ周长的最小值;若不存在,请说明理由;

(3)如图③,当点P在射线AM上运动时,是否存在以点PBQ为顶点的直角三角形?

若存在,求出此时t的值;若不存在,请说明理由.

(1) (2)

(3)

【答案】(1)证明见解析;(2)存在,理由见解析;(3)t2s或者14s.

【解析】分析(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可

(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;

(3)根据点的移动的距离,分类讨论求解即可.

详解:(1)∵旋转

∴△PCE≌△QCB

∴CP=CQ,∠PCE =∠QCB,

∵∠BCD=120°,CE平分∠BCD,

∴∠PCQ=60°,

∴∠PCE +∠QCE=∠QCB+∠QCE=60°,

∴△PCQ为等边三角形.

(2)存在

∵CE平分∠BCD,

∴∠BCE=

∵在平行四边形ABCD 中,

∴AB∥CD

∴∠ABC=180°﹣120°=60°

∴△BCE为等边三角形

∴BE=CB=4

∵旋转

∴△PCE≌△QCB

∴EP=BQ,

∴C△PBQ=PB+BQ+PQ

=PB+EP+PQ

=BE+PQ

=4+CP

∴CP⊥AB时,△PBQ周长最小

CP⊥AB时,CP=BCsin60°=

∴△PBQ周长最小为4+

(3)①当点B与点P重合时,P,B,Q不能构成三角形

②当0≤t<6时,由旋转可知,

∠CPE=∠CQB,

∠CPQ=∠CPB+∠BPQ=60°

则:∠BPQ+∠CQB=60°,

又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°

∴∠CBQ=180°—60°—60°=60°

∴∠QBP=60°,∠BPQ<60°,

所以∠PQB可能为直角

由(1)知,△PCQ为等边三角形,

∴∠PBQ=60°,∠CQB=30°

∵∠CQB=∠CPB

∴∠CPB=30°

∵∠CEB=60°,

∴∠ACP=∠APC=30°

∴PA=CA=4,

所以AP=AE-EP=6-4=2

所以t=2s

③当6<t<10时,由∠PBQ=120°>90°,所以不存在

④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°

∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,

而∠BPC>0°,

∴∠BPQ>60°

∴∠BPQ=90°,从而∠BCP=30°,

∴BP=BC=4

所以AP=14cm

所以t=14s

综上所述:t2s或者14s时,符合题意。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网