题目内容
【题目】如图,点的坐标为,过点作轴的垂线交直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点,...,按此做法进行下去,则的长是______.
【答案】
【解析】
先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2020的坐标,再根据弧长公式计算即可求解.
解:直线y=x点A1坐标为(2,0),过点A1作x轴的垂线交 直线于点B1可知B1点的坐标为(2, ),
以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1
OA2==4,点A2的坐标为(4,0),
这种方法可求得B2的坐标为(4, )故点A3的坐标为(8,0),B3(8,),
以此类推便可求出点A2020的坐标为(22020,0),
则的长是=.
故答案是:
【题目】为了调查某小区居民的用水情况,随机抽查了若干个家庭的月份用水量,结果如下表:
月用水量(立方米) | ||||
户数 |
根据上表解决下列问题:
(1)这组数据的众数是 ,中位数是 ;
(2)求这若干个家庭的月份平均用水量;
(3)请根据(2)的结论估计该小区个家庭月份总用水量.
【题目】“互联网+”时代,网上购物备受消费者青睐.某网店专售一种商品,其成本为每件元,已知销售过程中,销售单价不低于成本单价,且物价部门规定这种商品的获利不得高于.据市场调查发现,月销售量(件)与销售单价(元)之间的函数关系如表:
销售单价(元) | 65 | 70 | 75 | 80 | ··· |
月销售量(件) | 475 | 450 | 425 | 400 | ··· |
请根据表格中所给数据,求出关于的函数关系式;
设该网店每月获得的利润为元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?
该网店店主热心公益事业,决定每月从利润中捐出元资助贫困学生.为了保证捐款后每月利润不低于元,且让消费者得到最大的实惠,该如何确定该商品的销售单价?
【题目】在学习《用频率估计概率》这一节课后,数学兴趣小组设计了摸球试验:在一个不透明的盒子里装有质地大小都相同的红球和黑球共个,将球搅匀后从中随机摸出一个记下颜色,放回,再重复进行下一次试验,下表是他们整理得到的试验数据:
摸球的次数 | ||||||
摸到红球的次数 | ||||||
摸到红球的频率 |
(1)试估计:盒子中有红球 个;
(2)若从盒子中一次性摸出两个球,用画树状图或列表的方法求出一次性摸出的两个球都是红球的概率.