题目内容
【题目】已知:如图, △ABC中,AB=AC,D在AC上,E在BC上,A E,B D交于F,∠AFD=60°,∠FDC+∠FEC=180°.
(1)求证:BE=CD.
(2)如图2,过点D作DG⊥AF于G,直接写出AE ,FG, BF的关系.
(3)如图3,在(2)的条件下,连接CG,若FG=BF,△AGD的面积等于5,求GC的长度.
【答案】(1)见详解;(2)AE-BF=2FG;(3)
【解析】
(1)证明△ABE≌△BCD即可;
(2)利用△ABE≌△BCD,可得AE=BD,由图可知DF=BD-BF,再利用30°所对的直角边是斜边的一半,可得DF=2GF,即可得到AE,FG,BF的关系;
(3)连接BG,将三角形CBG绕点C顺时针旋转,是CB与CA重合,G点落在M处连接GM,先利用条件证出△GCM为等边三角形,再证出△GAM为等腰直角三角形,利用
△AGD的面积等于5,求出GA2,最后利用勾股定理求出GM即为GC.
解:(1)∵∠FDC+∠FEC=180°,∠FEC+∠AEB=180°
∴∠FDC=∠AEB
∵AB=AC
∴∠ABC=∠ACB
∵∠BAE=180°―∠ABC―∠AEB
∠CBD=180°―∠ACB―∠FDC
∴∠BAE=∠CBD
∵∠AFD是△ABF的外角
∴∠AFD=∠BAE+∠ABF=∠CBD+∠ABF=∠ABC
∴∠ABC=60°
∴△ABC是等边三角形
∴AB=BC
在△ABE和△BCD中
∴△ABE≌△BCD(AAS)
∴BE=CD
(2)∵△ABE≌△BCD
∴AE=BD
在Rt△GFD中∵∠GFD=60°
∴∠GDF=30°
∴
∴BD-BF=2FG
∴AE-BF=2FG
(3)连接BG,将三角形CBG绕点C顺时针旋转,是CB与CA重合,G点落在M处连接GM.
可得BG=AM,CG=CM,∠GBC=∠MAC,∠GCB=∠MCA
∴∠MCG=∠MCA+∠ACG=∠GCB+∠ACG=∠ACB=60°
∴△GCM为等边三角形
∴CG=CM=GM
∵FG=BF,∠GFD是△FBG的外角
∴∠FBG=∠FGB=∠GFD=30°
又∵∠GDF=30°
∴GB=GD,∠BGD=120°
又∵∠BAD=60°
∴点A在以G为圆心,GB为半径的圆上
∴GB=GD=GA,△AGD的面积等于5
∴∠GAB=∠GBA=∠FGB=15°,GD·GA=5
∴GA2=10
由(1)中△ABE≌△BCD
∴∠DBC=∠GAB=15°
∴∠GBC=∠FBG+∠DBC=45°
∴∠CAM=45°
∴∠GAM=90°
∴△GAM为等腰直角三角形,
∴GM=
∴GC=GM=