题目内容

已知菱形ABCD,AE⊥CD,若AE=4,BC=5,则AC•BD=______.
解法一:∵菱形ABCD
∴AD=BC=5
∵AE⊥CD,AE=4
在Rt△AED中,由勾股定理可知DE2=AD2-AE2
∴DE=3,CE=2
在Rt△AEC中,由勾股定理可知AC2=CE2+AE2
∴AC=
42+22
=2
5

∴AO=
5

在Rt△AOD中,由勾股定理可知OD2=AD2-AO2
∴OD=
52-
5
2
=2
5

∴BD=4
5

∴AC•BD=2
5
4
5
=40.

解法二:∵菱形ABCD,AE⊥CD
∴△ACD的面积为
1
2
AE•CD=
1
2
×4×5=10.
∴菱形ABCD的面积为二倍的△ACD的面积=10×2=20.
菱形的面积为对角线的长度乘积的二分之一.
所以AC•BD=40.
故答案为40.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网