题目内容
【题目】如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,D为⊙O上一点,连接AD、BD、CD,且BD=AB
(1)求证:∠ABD=2∠BDC;
(2)若D为弧AC的中点,求tan∠BDC.
【答案】(1)见解析(2)tan∠BDC=.
【解析】
(1)连接OD,连接BO并延长交AD于H,可得△BOA≌△BOD,所以∠ABO=∠DBO,再证CD∥BO,可得∠ABD=2∠DBO=2∠BDC;
(2)由D为弧AC的中点,可得△AOD,△OCB为等腰直角三角形,在Rt△BHD中利用锐角三角形函数的定义求得tan∠DBO的值,即可得出tan∠BDC的值.
(1)如图,连接OD,连接BO并延长交AD于H,
∵OD=OA,BD=AB,OB=OB,
∴△BOA≌△BOD(SSS),
∴∠ABO=∠DBO,
∴BH⊥AD,
∵以AC为直径作⊙O,
∴CD⊥AD,
∴CD∥BO,
∴∠BDC=∠DBO,
∴∠ABD=2∠DBO=2∠BDC;
(2)∵D为弧AC的中点,
∴∠AOD=∠COD=90°,
∵OA=OD,
∴∠OAD=∠ODA=∠HOD=45°,
∴∠COB=∠OBC=45°,
设OH=DH=a,
∴OC=OD=a,
∴OB=2a,
在Rt△BDH中,tan∠DBO=,
∵∠BDC=∠DBO,
∴tan∠BDC=.
【题目】有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.
下面是小彤探究的过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | … |
y | … | m | 0 | ﹣1 | 3 | 2 | … |
则m的值为 ;
(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;
(4)观察图象,写出该函数的一条性质 ;
(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为 ;