题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201212/63/891d9949.png)
2π |
3 |
3 |
2π |
3 |
3 |
分析:连接OB,易证△OAB是等边三角形,求得扇形OAB的面积减去△OAB的面积,即可求得阴影部分的面积.
解答:
解:连接OB.
∵DE⊥MN,
∴直角△AED中,∠DAE=90°-∠ADE=60°,
∵AD平分∠CAM交⊙O于点D,
∴∠CAM=2∠DAE=120°,
∴∠OAB=60°,
∵OA=OB,
∴△AOB是等边三角形.
∴S△AOB=
=
,
S扇形OAB=
=
,
则阴影部分的面积为
-
.
故答案是:
-
.
![](http://thumb.zyjl.cn/pic3/upload/images/201301/4/0510c60f.png)
∵DE⊥MN,
∴直角△AED中,∠DAE=90°-∠ADE=60°,
∵AD平分∠CAM交⊙O于点D,
∴∠CAM=2∠DAE=120°,
∴∠OAB=60°,
∵OA=OB,
∴△AOB是等边三角形.
∴S△AOB=
| ||
4 |
3 |
S扇形OAB=
60π×22 |
360 |
2π |
3 |
则阴影部分的面积为
2π |
3 |
3 |
故答案是:
2π |
3 |
3 |
点评:本题考查了扇形的面积的计算,正确证明△OAB是等边三角形是关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目