题目内容
【题目】如图,任意△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①∠A=2∠BFC﹣180°;②DE﹣BD=CE;③△ADE的周长等于AB与AC的和;④BF>CF.其中正确的有( )
A.①B.①②C.①②③D.①②③④
【答案】C
【解析】
由△ABC中,∠ABC与∠ACB的平分线交于点F,DE∥BC,易证得△BDF和△CEF都是等腰三角形,继而可得DE=BD+CE,又由△ADE的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC;即可得△ADE的周长等于AB与AC的和.
解:∵∠ABC与∠ACB的平分线交于点F,
∴∠FBC=∠ABF=,∠FCB=∠ACF=,
∵∠A+∠ABC+∠ACB=180°,
∴∠A+2∠FBC+2∠FCB=180°,
∵∠BFC+∠FCB+∠BFC=180°,
∴∠A=2∠BFC﹣180°,
故①正确;
∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∵△ABC中,∠ABC与∠ACB的平分线交于点F,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∴∠DBF=∠DFB,∠ECF=∠EFC,
∴DB=DF,EF=EC,
∴DE=DF+EF=BD+CE,
故②正确;
∴△ADE的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC;
故③正确
∵∠ABC不一定等于∠ACB,
∴∠FBC不一定等于∠FCB,
∴BF与CF不一定相等,无法判断其大小,
故④错误;
故选:C.
【题目】某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
运动项目 | 频数(人数) |
羽毛球 | 30 |
篮球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
请根据以上图表信息解答下列问题:
(1)频数分布表中的 , ;
(2)在扇形统计图中,“排球”所在的扇形的圆心角为 度;
(3)全校有多少名学生选择参加乒乓球运动?