题目内容
【题目】如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是( )
A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)
【答案】B
【解析】分析:根据题意,以A为对称中心作点P(0,2)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.
详解:根据题意,以A为对称中心作点P(0,2)的对称点P1,即A是PP1的中点,
又∵A的坐标是(1,1),
结合中点坐标公式可得P1的坐标是(2,0);
同理P2的坐标是(2,﹣2),记P2(a2,b2),其中a2=2,b2=﹣2.
根据对称关系,依次可以求得:
P3(﹣4﹣a2,﹣2﹣b2),P4(2+a2,4+b2),P5(﹣a2,﹣2﹣b2),P6(4+a2,b2),
令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),
∵2010=4×502+2,
∴点P2010的坐标是(2010,﹣2),
故选:B.
练习册系列答案
相关题目