搜索
题目内容
若一次函数
=
+
,当
的值增大1时,
值减小3,则当
的值减小3时,
值(*)
A.增大3
B.减小3
C.增大9 (
D.减小9
试题答案
相关练习册答案
C
由题意得,当
的值增大1时,
值减小3,与则当
的值减小3时构成两个相似三角形,且相似比为1:3,从而得出当
的值减小3时,
值增大9
故选C
练习册系列答案
正大图书练测考系列答案
一本必胜系列答案
进阶集训系列答案
尖子生单元测试系列答案
轻松假期行暑假用书系列答案
世纪百通主体课堂小学课时同步练习系列答案
经纶学典棒棒堂系列答案
全程导航大提速系列答案
课程导学系列答案
Top巅峰特训系列答案
相关题目
据悉,某市发改委拟于今年4月27日举行居民用水价格调整听证会,届时将有两个方案提供听证。如图(1),射线OA、射线OB分别表示现行的、方案一的每户每月的用水费y(元)与每户每月的用水量x(立方米)之间的函数关系,已知方案一的用水价比现行的用水价每立方米多0.96元;方案二如图(2)表格所示,每月的每立方米用水价格由该月的用水量决定,且第一、二、三级的用水价格之比为1︰1.5︰2(精确到0.01元后).
小题1:写出现行的用水价是每立方米多少元?
小题2:求图(1)中m的值和射线OB所对应的函数解析式,并写出定义域;
小题3:若小明家某月的用水量是a立方米,请分别写出三种情况下(现行的、方案一和方案二)该月的水费b(用a的代数式表示);
小题4:小明家最近10个月来的每月用水量的频数分布直方图
如图(3)所示,估计小明会赞同采用哪个方案?请说明理由。
如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角.
李明投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量
y
(件)与销售单价
x
(元)之间的关系可近似的看作一次函数:
y
=-10
x
+500.
⑴设李明每月获得利润为
W
(元),当销售单价定为多少元时,每月获得利润最大?(4分)⑵如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3分)⑶根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)(3分)
一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元. 该商场为促销决定:买1支毛笔就赠送1本书法练习本. 某校书法兴趣小组打算购买这种毛笔10支,这种练习本x(
)本, 则付款金额y(元)与练习本个数x(本)之间的函数关系式是
.
我市某工艺厂为迎“五一”,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价
(元/件)
……
30
40
50
60
……
每天销售量
(件)
……
500
400
300
200
……
(1) 把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°, BC=5,点A、B的坐标分别为(1,O)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=x-3上时,线段BC扫过的面积为 【 】
A. 24 B. 12 C. 6 D.
在同一坐标系中,函数
(k≠0)和
的图象大致是( )
A.
B.
C.
D.
(本题8分)某服装店老板到厂家选购
A
、
B
两种型号的服装,它们的进价及获利如右表所示.
(1)根据市场需求,服装店老板决定,购进
B
型服装的数量要比购进
A
型服装数量的2倍少3件,且
A
型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于1534元.问有几种进货方案?请求出所有的进货方案.
(2)采用哪种方案时,可获得最大利润,最大利润为多少?
型号
A
B
进价(元/件)
90
120
获利(元/件)
20
22
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总