题目内容
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④△ABD边AB上的高等于DC.其中正确的个数是( )
A. 1B. 2C. 3D. 4
【答案】D
【解析】
①根据作图的过程可以判定AD是∠BAC的角平分线;
②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;
③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;
④利用角平分线上的一点到线段两端点的距离相等,因此判断出△ABD边AB上的高等于DC.
①根据作图的过程可知,AD是∠BAC的平分线.
故①正确;
②∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°.
又∵AD是∠BAC的平分线,
∴∠CAD=∠BAD=∠CAB=30°,
∴∠ADC=90°-∠2=60°,即∠ADC=60°.故②正确;
③∵∠BAD =∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上.
故③正确;
④角平分线上的一点到线段两端点的距离相等, 因此判断出△ABD边AB上的高等于DC.
故④正确.
综上所述,正确的结论是:①②③④,共有4个.
故选D.
【题目】某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率,表格如下,则符合这一结果的试验最有可能是( )
次数 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
频率 | 0.60 | 0.30 | 0.50 | 0.36 | 0.42 | 0.38 | 0.41 | 0.39 | 0.40 | 0.40 |
A. 掷一个质地均匀的骰子,向上的面点数是“6”
B. 掷一枚一元的硬币,正面朝上
C. 不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球
D. 三张扑克牌,分别是3,5,5,背面朝上洗匀后,随机抽出一张是5