题目内容
【题目】如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED与△DFC的周长的和为( )
A. 34B. 32C. 22D. 20
【答案】B
【解析】
首先根据两组对边互相平行的四边形是平行四边形判定出四边形AEDF是平行四边形,进而得到DF=AE,然后证明DE=BE,即可得到DE+DF=AB,从而得解.
解:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴DF=AE,
又∵DE∥AC,
∴∠C=∠EDB,
又∵AB=AC,
∴∠B=∠C,
∴∠B=∠EDB,
∴DE=BE,
∴DF+DE=AE+BE,
∴△BED与△DFC的周长的和=△ABC的周长=10+10+12=32,
故选:B.
练习册系列答案
相关题目