题目内容
【题目】小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.
【答案】浮漂B与河堤下端C之间的距离为1.5米.
【解析】
试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°-∠ODB-∠ACD=90°,解Rt△ACD,得出AD=ACtan∠ACD=米,CD=2AD=3米,
再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD-CD即可求出浮漂B与河堤下端C之间的距离.
试题解析:延长OA交BC于点D.
∵AO的倾斜角是60°,
∴∠ODB=60°.
∵∠ACD=30°,
∴∠CAD=180°-∠ODB-∠ACD=90°.
在Rt△ACD中,AD=ACtan∠ACD==(米),
∴CD=2AD=3米,
又∵∠O=60°,
∴△BOD是等边三角形,
∴BD=OD=OA+AD=3+=4.5(米),
∴BC=BD-CD=4.5-3=1.5(米).
答:浮漂B与河堤下端C之间的距离为1.5米.
练习册系列答案
相关题目