题目内容
【题目】阅读下面材料:
点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣.
当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
当A、B两点都不在原点时,如图2,点A、B都在原点的右边
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;
如图3,当点A、B都在原点的左边,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;
如图4,当点A、B在原点的两边,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;
回答下列问题:
(1)数轴上表示1和6的两点之间的距离是 ,数轴上表示2和-3的两点之间的距离是 ;
(2)数轴上若点A表示的数是x,点B表示的数是-4,则点A和B之间的距离是 ,若∣AB∣=3,那么x为 ;
(3)当x是 时,代数式;
(4)若点A表示的数,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,点Q与点P 相距1个单位?(请写出必要的求解过程)
【答案】(1)5 ;5(2) ;-7或-1(3)-4或3(4);
【解析】试题分析:
(1)由阅读材料内容可知:若数轴上任意两点A、B所表示的数分别为:a、b,则A、B两点间的距离,由此可计算本题答案;
(2)同(1)可解得第一空的答案;根据(1)中的公式和绝对值的意义,可列方程解得第二空的答案;
(3)由阅读材料可知:表示在数轴上表示数“x”的点到表示数“-2”和数“1”这两个点的距离之和等于7,我们分、和三种情况来化简式子就可求得“x”的值;
(4)由题意可知:点A表示的数为“-1”,点B表示的数是“9”,则由已知可得:,,当P与Q相距1个单位长度时,要分点Q在点P右边和点Q在点P左边两种情况来讨论,如图1和图2,列出方程可求解;
试题解析:
(1)∵,
∴两空都应填“5”;
(2)∵数轴上若点A表示的数是x,点B表示的数是-4,
∴;
又∵,
∴,即,解得:或;
(3)由阅读材料可知:表示在数轴上表示数“x”的点到表示数“-2”和数“1”这两个点的距离之和等于7,所以要我们分、和三种情况来讨论:
①当时,可化为:,解得:;
②当时,可化为:,该式子不成立;
③当时,可化为:,解得;;
综上所述:或;
(4)由题意可知:点A表示的数为“-1”,点B表示的数是“9”,则由已知可得:
,,当P与Q相距1个单位长度时,要分点Q在点P右边和点Q在点P左边两种情况来讨论:
①如图1,当Q在P的右边时,由可得:,即,解得:;
②如图2,当Q在P的左边时,由可得:,即,解得;
综上所述:或.
【题目】某地一周内每天的最高气温与最低气温记录如下表:
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
最高气温 | 10℃ | 12℃ | 11℃ | 9℃ | 7℃ | 5℃ | 7℃ |
最低气温 | 2℃ | 1℃ | 0℃ | ﹣1℃ | ﹣4℃ | ﹣5℃ | ﹣5℃ |
则温差最大的一天是星期_____;这一天温差为_____℃.