ÌâÄ¿ÄÚÈÝ
ÔĶÁ²ÄÁϲ¢»Ø´ðÎÊÌ⣺²ÄÁÏ£ºÈôa=
2007 |
2008 |
2008 |
2009 |
½â£º¡ßa=
2007¡Á2009 |
2008¡Á2009 |
(2008-1)(2008+1) |
2008¡Á2009 |
20082-12 |
2008¡Á2009 |
b=
2008¡Á2008 |
2009¡Á2008 |
20082 |
2008¡Á2009 |
ÓÖ¡ß20082-12£¼20082£¬ÇÒ·ÖĸÏàͬ£¬
¡àa£¼b£®
ÎÊÌ⣺£¨1£©Ìî¿Õ£º
2008 |
2009 |
2009 |
2010 |
£¨2£©µ±n£¾0ʱ£¬Àà±ÈÉÏÃæµÄ·½·¨£¬±È½Ï
n |
n+1 |
n+1 |
n+2 |
·ÖÎö£º·Ö±ð°ÑËù¸ø·ÖÊý»ò·ÖʽÕûÀíΪͬ·Öĸ·ÖÊý»ò·Öʽ£¬·Ö×Ó´óµÄÊý»òʽ×Ӿʹó£®
½â´ð£º½â£º£¨1£©¡ß
=
=
£¬
=
£¬
ÓÖ20092-12£¼20092£¬ÇÒ·ÖĸÏàͬ£¬
¡à
£¼
£»
£¨2£©
=
=
£¬
=
=
£¬
¡ß·ÖĸÏàͬ£¬n2+2n£¼n2+2n+1£¬
¡à
£¼
£®
2008 |
2009 |
2008¡Á2010 |
2009¡Á2010 |
20092 -1 |
2009¡Á2010 |
2009 |
2010 |
20092 |
2009¡Á2010 |
ÓÖ20092-12£¼20092£¬ÇÒ·ÖĸÏàͬ£¬
¡à
2008 |
2009 |
2009 |
2010 |
£¨2£©
n |
n+1 |
n(n+2) |
(n+1)(n+2) |
n2 +2n |
(n+1)(n+2) |
n+1 |
n+2 |
(n+1)2 |
(n+2)(n+1) |
n2 +2n+1 |
(n+1)(n+2) |
¡ß·ÖĸÏàͬ£¬n2+2n£¼n2+2n+1£¬
¡à
n |
n+1 |
n+1 |
n+2 |
µãÆÀ£ºÓõ½µÄ֪ʶµãΪ£ºÁ½¸öÕý·ÖÊý£¬·ÖĸÏàͬ£¬·Ö×Ó´óµÄÊý¾Í´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿