ÌâÄ¿ÄÚÈÝ
25¡¢ÔĶÁ²ÄÁϲ¢»Ø´ðÎÊÌ⣺
ÎÒÃÇÖªµÀ£¬Íêȫƽ·½Ê½¿ÉÒÔÓÃƽÃ漸ºÎͼÐεÄÃæ»ýÀ´±íʾ£¬Êµ¼ÊÉÏ»¹ÓÐһЩ´úÊýºãµÈʽҲ¿ÉÒÔÓÃÕâÖÖÐÎʽ±íʾ£¬È磺£¨2a+b£©£¨a+b£©=2a2+3ab+b2£¬¾Í¿ÉÒÔÓÃͼ£¨1£©»òͼ£¨2£©µÈͼÐεÄÃæ»ý±íʾ£®
£¨1£©Çëд³öͼ£¨3£©Ëù±íʾµÄ´úÊýºãµÈʽ£º
£¨2£©ÊÔ»Ò»¸ö¼¸ºÎͼÐΣ¬Ê¹ËüµÄÃæ»ý±íʾ£º£¨a+b£©£¨a+3b£©=a2+4ab+3b2£»
£¨3£©Çë·ÂÕÕÉÏÊö·½·¨Áíдһ¸öº¬ÓÐa£¬bµÄ´úÊýºãµÈʽ£¬²¢»³öÓëËü¶ÔÓ¦µÄ¼¸ºÎͼÐΣ®
ÎÒÃÇÖªµÀ£¬Íêȫƽ·½Ê½¿ÉÒÔÓÃƽÃ漸ºÎͼÐεÄÃæ»ýÀ´±íʾ£¬Êµ¼ÊÉÏ»¹ÓÐһЩ´úÊýºãµÈʽҲ¿ÉÒÔÓÃÕâÖÖÐÎʽ±íʾ£¬È磺£¨2a+b£©£¨a+b£©=2a2+3ab+b2£¬¾Í¿ÉÒÔÓÃͼ£¨1£©»òͼ£¨2£©µÈͼÐεÄÃæ»ý±íʾ£®
£¨1£©Çëд³öͼ£¨3£©Ëù±íʾµÄ´úÊýºãµÈʽ£º
£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2
£»£¨2£©ÊÔ»Ò»¸ö¼¸ºÎͼÐΣ¬Ê¹ËüµÄÃæ»ý±íʾ£º£¨a+b£©£¨a+3b£©=a2+4ab+3b2£»
£¨3£©Çë·ÂÕÕÉÏÊö·½·¨Áíдһ¸öº¬ÓÐa£¬bµÄ´úÊýºãµÈʽ£¬²¢»³öÓëËü¶ÔÓ¦µÄ¼¸ºÎͼÐΣ®
·ÖÎö£º±¾Ì⿼²éÓÃƽÃ漸ºÎͼÐεÄÃæ»ýÀ´±íʾһЩ´úÊýºãµÈʽ£¬Èçͼ£¨3£©Öг¤·½ÐεÄÃæ»ý=³¤¡Á¿í=£¨2a+b£©£¨a+2b£©£¬³¤·½ÐεÄÃæ»ý»¹¿ÉÒ԰Ѽ¸¸öСͼÐεÄÃæ»ýÏà¼Ó£¬¼´a2+a2+ab+ab+ab+ab+ab+b2+b2=2a2+5ab+2b2£®
½â´ð£º½â£º£¨1£©£¨2a+b£©£¨a+2b£©=2a2+5ab+2b2£»
£¨2£©£¨´ð°¸²»Î¨Ò»£©£»
£¨3£©ºãµÈʽÊÇ£¨a+2b£©£¨a+b£©=a2+3ab+2b2£¬ÈçͼËùʾ£®
£¨´ð°¸²»Î¨Ò»£©
£¨2£©£¨´ð°¸²»Î¨Ò»£©£»
£¨3£©ºãµÈʽÊÇ£¨a+2b£©£¨a+b£©=a2+3ab+2b2£¬ÈçͼËùʾ£®
£¨´ð°¸²»Î¨Ò»£©
µãÆÀ£º±¾ÌâÊÇÍêȫƽ·½¹«Ê½µÄÓ¦Óã¬Á½ÊýµÄƽ·½ºÍ£¬ÔÙ¼ÓÉÏ»ò¼õÈ¥ËüÃÇ»ýµÄ2±¶£¬¾Í¹¹³ÉÁËÒ»¸öÍêȫƽ·½Ê½£®×¢Òâ»ýµÄ2±¶µÄ·ûºÅ£¬±ÜÃ⩽⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿