题目内容
(本题满分12分)如图,四边形OABC的四个顶点坐标分别为O(0,0),A(8,0),B(4,4),C(0,4),直线l::y=x+b保持与四边形OABC的边交于点M、N(M在折线AOC上,N在折线ABC上)设四边形OABC在l右下方部分的面积为S1,在l左上方部分的面积为S2,记S为的差(S≥0)。(1)求∠OAB的大小;
(2)当M、N重合时,求l的解析式;
(3)当b≤0时,问线段AB上是否存在点N使得S=0?若存在,求b的值;若不存在,请说明理由;
(4)求S与b的函数关系式。
解(1)过点B过BE⊥x轴,垂足为E。点E(4,0)于是BE=4,AE=4,△ABE为等腰直角三角形,∠OAB=45°。
(2)当点M、N重合时,应重合到点A(8,0)。
直线l的解析式y=x-8.
(3)四边形OABC的面积为×4(4+8)=24,直线l:y=x+b与x轴的交角为45°,△AMN为等腰直角三角形。当S=0时,△AMN的面积为四边形OABC的面积的一半,即12.
过点N作x轴的垂线,点N的坐标为(8-2,2)代入y=x+b得b=4-8.
(4)S=b2+24b+8解析:
略
(2)当点M、N重合时,应重合到点A(8,0)。
直线l的解析式y=x-8.
(3)四边形OABC的面积为×4(4+8)=24,直线l:y=x+b与x轴的交角为45°,△AMN为等腰直角三角形。当S=0时,△AMN的面积为四边形OABC的面积的一半,即12.
过点N作x轴的垂线,点N的坐标为(8-2,2)代入y=x+b得b=4-8.
(4)S=b2+24b+8解析:
略
练习册系列答案
相关题目
(本题满分12分)
如图,的顶点A、B在二次函数的图像上,又点A、B[来分别在轴和轴上,∠ABO=.
1.(1)求此二次函数的解析式;(4分)
2.
|
点在上述函数图像上,当与相似时,求点的坐标.(8分)