题目内容
【题目】由菜鸟网络打造的一个仓库有相同数量的工人和机器人,均为x名(其中x>5),平时每天都只工作8小时,每名机器人每小时加工包裹(分、拣、包装一体化)的数量是每名工人每小时加工包裹数量的2倍.随着“春节”临近,人工短缺,寄年货的包裹增多,公司决定再增加2名机器人,且将机器人每天工作时间延长至12小时,并对每名机器人进行升级改造,让现在每名机器人每小时加工包裹的数量在原有基础上增加x个,结果现在所有机器人每天加工包裹的数量是所有工人平时每天加工包裹数量的6倍,则该仓库平时一天加工______个包裹.
【答案】864
【解析】
设工人每小时加工y个包裹,则改造前机器人每小时加工2y个包裹,改造后机器人每小时加工(2y+x)个包裹,则:12(x+2)(2y+x)=6×8xy,推出x2+4y-2xy+2x=0,得:y=,根据x是大于5的整数,y是整数,推出x=6,y=6,由此即可解决问题.
设工人每小时加工y个包裹,则改造前机器人每小时加工2y个包裹,改造后机器人每小时加工(2y+x)个包裹,
依题意,得:12(x+2)(2y+x)=6×8xy,
∴x2+4y-2xy+2x=0,
∴y=,
∵x是大于5的整数,y是整数,
∴x=6,y=6,
∴该仓库平时一天加工6×6×8+6×12×8=864(个),
故答案为864.
【题目】某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克 | 2 | 4 | 10 | |
市场需求量百千克 | 12 | 10 | 4 |
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本