题目内容

【题目】如图,Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC上的点,且满足AC=DC=DE=BE=1,则tanA=

【答案】 +1
【解析】解:设∠B=x°, ∵BE=DE,
∴∠B=∠BDE=x°,
∴∠CED=2x°,
又∵DE=DC,
∴∠ECD=∠CED=2x°.
∴∠DCA=∠ACB﹣∠ECD=90°﹣2x°.
∵直角△ABC中,∠A=90°﹣∠A=90°﹣x°.
又∵CA=CD,
∴∠ADC=∠A=90°﹣x°.
∵△ACD中,∠ACD+∠A+∠ADC=180°,
∴(90﹣2x)+2(90﹣x)=180°,
解得x=22.5°,则∠CED=∠ECD=45°,
∴△ECD是等腰直角三角形,
∴EC= CD=
∴BC= +1,
∴tanA= = +1.
故答案是: +1.
【考点精析】解答此题的关键在于理解解直角三角形的相关知识,掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网