题目内容
【题目】(探究)如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.
(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度
(2)∠A与∠P的数量关系为 ,并说明理由.
(应用)如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为 .
【答案】(1)50,115;(2)(3)
【解析】
根据三角形内角和及角平分线的定义即可算出.
解:(1)∵∠ABC=50°,∠ACB=80°,
∴∠A=50°,
∵∠ABC的平分线与∠ACB的平分线相交于点P,
∴∠CBP=∠ABC,∠BCP=∠ACB,
∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,
∴∠P=180°﹣65°=115°,
故答案为:50,115;
(2).
证明:∵BP、CP分别平分∠ABC、∠ACB,
∴,,
∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,
∴,
∴,
∴;
(3).
理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,
∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,
∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,
∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),
又∵∠ABC+∠ACB=180°﹣∠A,
∴∠Q=(180°﹣∠A)=90°﹣∠A.
练习册系列答案
相关题目