题目内容

【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.

(1)如图①,若α=90°,求AA′的长;
(2)如图②,若α=120°,求点O′的坐标;
(3)在(Ⅱ)的条件下,边OA上 的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)

【答案】
(1)

解:如图①,

∵点A(4,0),点B(0,3),

∴OA=4,OB=3,

∴AB= =5,

∵△ABO绕点B逆时针旋转90°,得△A′BO′,

∴BA=BA′,∠ABA′=90°,

∴△ABA′为等腰直角三角形,

∴AA′= BA=5


(2)

解:作O′H⊥y轴于H,如图②,

∵△ABO绕点B逆时针旋转120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,

∴∠HBO′=60°,

在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,

∴BH= BO′= ,O′H= BH=

∴OH=OB+BH=3+ =

∴O′点的坐标为(


(3)

解:∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,

∴BP=BP′,

∴O′P+BP′=O′P+BP,

作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,

则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,

∵点C与点B关于x轴对称,

∴C(0,﹣3),

设直线O′C的解析式为y=kx+b,

把O′( ),C(0,﹣3)代入得 ,解得

∴直线O′C的解析式为y= x﹣3,

当y=0时, x﹣3=0,解得x= ,则P( ,0),

∴OP=

∴O′P′=OP=

作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,

∴∠DP′O′=30°,

∴O′D= O′P′= ,P′D= O′D=

∴DH=O′H﹣O′D= =

∴P′点的坐标为(


【解析】本题考查了几何变换综合题:熟练掌握旋转的性质;理解坐标与图形性质;会利用两点之间线段最短解决最短路径问题;记住含30度的直角三角形三边的关系.(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y= x﹣3,从而得到P( ,0),则O′P′=OP= ,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.
【考点精析】本题主要考查了线段的基本性质和含30度角的直角三角形的相关知识点,需要掌握线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短;连接两点的线段的长度,叫做这两点的距离;线段的大小关系和它们的长度的大小关系是一致的;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网