题目内容

【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.

(1)求证:DE=CF;
(2)求EF的长.

【答案】
(1)证明:∵D、E分别为AB、AC的中点,

∴DE BC,

∵延长BC至点F,使CF= BC,

∴DE FC,

即DE=CF


(2)解:∵DE FC,

∴四边形DEFC是平行四边形,

∴DC=EF,

∵D为AB的中点,等边△ABC的边长是2,

∴AD=BD=1,CD⊥AB,BC=2,

∴DC=EF=


【解析】(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.
【考点精析】利用等边三角形的性质和三角形中位线定理对题目进行判断即可得到答案,需要熟知等边三角形的三个角都相等并且每个角都是60°;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网